
NASA-CR-2OITQ6

L_.-UR-95-. _ ]. _ 8

, tlt

,f

Los Alamos Nalnonal Labo"a!ory Ls operated by the Un_versily ol Cahtornla for lhe Llnded Slates Deparlmenl of Energy under conlrac! W-7405-ENG-36

TITLE A NON-LINEAR ALGEBRAIC MODEL FOR THE
TURBULENT SCALAR FLUXES

AUTPKDR(S) Bassam A. Younis, City University, London

Charles G. Speziale, Boston University

Timo{hy T. Clark. T-3

SUBMITTED TO lntenmtional Conference on Turbulent Heat Tran3fer, San Diego

CaliJ_)rnia, March 10-15, 1996

By acceptance of thPs ai'l:cle, the pubhsher recogn,zes Ihat the U S Government retanns a nonexctusnve, royally-free hcense Io publush or reproduce the

pubhsrled Iorm of this cor_tribul_on, or tO allow olhers to do SO, lot U S GovemmenI purposes

The Los AIamos Nal_onal Laboratory requests irma! the pubhsher tdenhht thns aP, icle as work pedormed under lhe auspices of lhe U S Deparlmenl of Energy,

_ L.._..

FOI_M NO 836 114

ST NO 2629 5,1_1

Los Alamos National Laboratory
Los Alamos, New Mexico 87545



• A

s,

Interim ICASE Report

anti

Draft Paper for

hv

Int_'rnat_onal Conferenc_ on 7)_rbulent Heat Transl, 7"

San D_r.9o. Cabforvlm

Mo.rch I0-I5. 1ff96

A NON-LINEAR ALGEBRAIC MODEL FOR THE

TURBULENT SCALAR FLUXES

Bassam A. Younis*

Department of ('ivil Engineering

City l.'niver_ity

London EC1V 0HB - UK

Charles G. Speziale

Aerospace and Mechanical Engineering Department

Boston University

Bost on.._la_*sa('huset ts 02215

Timothy T. Clark

Theoretical Division

Theoretical Fluid Dynamics

Los Alamos Nati,mal Laborator.v

Los Alamos. New .Mexico 87545

DISCLAIMER

This report was prepared as an account of work _ponsorcd by an agency of the Unitc'_[ Stat_

Government Neither the Un|ted State,: Government nor any agency thereof, nor any of their

employees, makes any warranty, express or tmphcd, or assumes any legal habillty or responsi-

bdity for the accuracy, completeness, or usefulness of an', reformat=on, apparatus, product, or

prc<ess disclosed, or represents that _ts use would not infringe privately owned rights. Refer-

ence hereto to any spot=tic commerc=al pr_xiuct, pr¢_ess, or scr'v_ceby trade name, trademark,

manufacturer, or otherwise does not necessari[y constitute or imply its endorsement, recom-

mendauon, or favoring by the Umted States Government or any asency thereof The vlews

and opinions of authors expressed hereto do not necessarily state or reflect those of the

United ._tatesGovernment or any agency thereof.

*This research wa,,_ supported by the National Aeronautics and Space Administration under NASA Contract

No, NAS1 - 19480 while the authors were in residence at the Institute for Computer Applications in Science and

Engineering (ICASE). NASA Land, icy Research Center, Hampton, VA 2'3681-0001.



1 Introduction

lhc purpo-e of rhi_ paper is tt} report on a novel approach t_ the m, Hh,lling ,}f thv turtmMlt scalar

_JllXP_. i 11_4_ 'A hi{h _trisP t..., :.t, Oli:..;{.qll{,Ii({' *)f tiIllt, ax',,ragin< the transl)ort {'qlhUti{}l* f**r a lll{'all _,cahtr

{(-)). "Ih,' fl,cu., of this paper will be on the ca>c where _-) i.- a 'pa._.,ivv" .-,cahtr: thv ,,xtvnsion ,,t thi:.

apt}roac}* to ca.,,,> involving bu,,yancy and comprvs..,itoilit) will b_, brivflv dis< u_.s{d•

"Itw m_',t fl_r a new appr,)ach to modelling _he scalar fluxes .'.terns from the lack of r{.ali.-m in th,,

pvrfi}rn:alWe of the simph' _radivnt-tran.-por* m{,dPls and the inadeqlm{ y of many of IIw a.-.:.-lllll|?..-

tiol|.- underlying the more complicated scalar-flux transtn,r! , I,,>urv.-.. 'lh,. pr¢,bl,,m> wi',h the >imph'

gradient-trallst)_}rt cl,}.'.ure.', are well knowll. In nitM(.l.- of this type. tlw scalar _IIX¢*. '4 ar{' relat_'d to

tl,*' IllPall scalar field via a >{alar turbulent di[fusiviry {Yt_. thus:

-7-,-_,_= F, 0a', (1 i

wh,'r,', f,,r ,'xampl*':

(-',, /.-'
Ft "})

O"0 ¢

k ,nd e ar{'. rest},'{tivel.v, th{' *urbuh'nt kim,lic energy and dis:it}ati{}n rat{ whih, rr,, is '.h{' al}t}rt,priatc

Prandtl .'Schmidl mmfl}{.r..Xl,,,h,I,, _}f thi.- tyt}{' fail Imdh in {'omt}l,'x and .,.tr{mgly-bu{,yant fl,_xw. 8.-

Eq. (1} i.- {h,arly t,}{, simplistic in it> ret}re.-entation of the .-{alar fluxe.- lt|{,t{', for examt}h'. Ill{'

ab_.{'n{'_' {,f an {'xpli{'it d{3}{'ndcntv m lh{' F[vy||old.- stres..,e,, c,r oI_ the mean sh{,ar). E{l,mti(m ( 1} ab.o

impli{'.- that th{' tltrt}_fl,'nt diffusivit.v is i,.olr{,i}ic and tirol th{' turbuh,nt _.{alar ltuxv_- and *h{' n.,an

.-calar gradicnl> arc, aliglwd..Neither resul! hohi_ truc ill comph'x tw_- and _hrev-dimvn_i,mal .-hear

flows. Ba_,hvlor {194'}} t}r,,t}{,.'-e,l a generalization to the gradi{'nt-transI},,rt hyl,(}the,.i- inv,,h•i,lg

lh{. {t{,finithm _}f a turl,uh'nt eddy-diffusivity tensor {D, a I. *hub:

0o
(31

- n,# = D u O.r,.

S,,xeral atl{.mt}ts l|av,. 1}{,vn made at obtaining a practi{al ret}r{'_.*'ntation fl,r D,a. S,}u_{' of th,._.,. !}v

19...}} and Ru't}iw.t{qn and Barton (1991 !_ will b{. {tis{_i_-,.,.{l

lat,'r [II Ih{' t}apcr. At this t){}iw, however, it is {'l.HIV{'Ili{ql'f 1{} llllqlti{}II t_,'_'_} Sllth t}r{q}{}sal.',. Daly

and ttarlow (19711) mad{' D,_ dir{,{tlv prot}{}rtiona] to th{, R,,ynohls slress,,.-, thu.,.:

0(--)
-u,O = {'otLsto_t x u,18,-- (-|!

d.r _,

This mod_,l ha.,. found wid,sprvad due to its relative simplicity and ability to account f,)r the

anisotropy of turbulent diffusivit.v. Launder (1988. 19951 ha.,_ proposed the "'WKY" model for th*'

scalar fluxe.- obtains th_,se {luantities as:

-- k 0(-) , ---= OU,

Launder's m,Mvl is unique among_,t the existing algebrai{" closures in (i) being implicit in th{ _ scalar

fluxes and (ii) not being of the gradi{,nl-transport type in that it clearh allows for finite scalar



ttux('.-, in the ab.-_.n(_, of m_'atl scalar gradienl.< ]'hi._ i._ iude_'d p¢_.-._ibh' in pra('tice but _mlv (tu_"

to Ihe a(ti(m of transport by thv mean-flow and turbulence: a '_on-local effect which emmet be

catered fc>r within the coiltext of algebraic closures. Few exampl_,s of the use of the "'WET" model m

complex shear l'Iows exist all,.[ hence little further can be said ab_,_t the' va[idit_ of such formulation.

The alternative route to the gradi,'nt-transport hypothesis involves cMculating the scalar fluxes.

directly, either from the solution of modelled differential tran.sport equation._ in which they are the

dependent variable_ or from simplified algebraic relations derived from these differentiM equation._.

The exact eq_lations art, of the form:

Of _L,_ 0__'_._7_,01 - u_O_ i_k_-'--;-:_x_ - 39,0 _0--7- + O.r_,

O00u,
- (',,+v_----

O.r_. O.r_.

_ __ '0 OH vO Om0 (u_mO + P"_,_ - ",.,-- - --)
OJ'k D O J j,. (J,l'_,

p' OH

p OJ, (61

whrre ._ is thf' v_>lumrtric rxpansion coc_cient . ". is molecular diflusivity. S_ is the fluid d(.n.qty.

and pt i._ the flut'tllatiIlI_, pr_,.,,.,,m'e.

The first throe terms on the right-hand-st(h, of Eq. (6) repr(_cnt, r(_pe<'tiw,ly, the rates at which

m0 is g_,nerated by the turbulent interaction with the mean field and by the body forces (bu_tvaney

in this ca.,_e). These wrms art, the only ones in Eq. (6) that can be treaied exactly: the remainder

must first be approximated before the system of equations can be solved for the scalar fluxes•

The, vi_t'Ollb destruction term (which is zero only in isotropic turbulence) is usually neglected in

non-isotr,_pic turlml(,me a.,, well by invoking the a,ssumption of local isotropy al high turbulence

Fleynoht> mmib(,r_,. This a.,_>_|ttlptir)l_ d()e_, ilot rationally account for the eaerg3' ca.,<'ad_, t() high

wave numbers, a pr,,c_-s._ which _ugg(,sts t hat some di._slpation n,_,db t,_ be present ( t }w DNS r--ults

of R_g,,r._ et al. I19_;9) obtaim,d in a fully-developed turbulent chanm,l flow evrn sug, gesi that

this term acts a.- a t, roductwr_ t('r_TI in certain circumstan('(._!). The Idrb_lent-tran,_port term is

either neglected las in conventional Algebraic Stress .Mod_'l (:l¢_sllres) or is niodr[led via a gradient-

transport relation. The last term in Eq. (6). the fluctualin_ Im'ssure-scalar-gradirnt correlations.

may be viewed a.'_ the counterpart of the pressure-strain term in the _ transport equation. It is

clearly an important agency which requires careful modelling, and it i> perhaps here that current

scalar- flux-t ranspart models are lea_t well developed. An exact expression ior t hi., quant it 3' (derived

from the instantaneous equations for the scalar and the i-component of momentum) is given a:;:

,,o,. , o0÷ m" o,+ <,,
pox, 4--'=__ \ OxlOxm 0.1", 2cl.rm Ozl (:J.ri _O' O.r I __ r

(i')

where the primed quantities are evaluated at distance x + r.

There are three distinct groupings of terms in Eq. (7): one which is a_ssociatod with pu"elv tur-

bulence interactions (the "slow" part. _'_.11. another which involves interactinns bet_een the mean

I
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velocit N gradit'nt> and ttuctuati,_g quantitie.', (tile "rapid" part. ,,rzj.:_) and a third which involves tilt,

body forcc.-, ( rr,j.3 ). Note that the gradients of the mean scalar do not appear explicitly in Eq. (7).

"I'h_' c(mventional approadl to tnod_,lling the integral expression in Eq. (7) has beett to model

each of its components separately. Thus, Monin (1965), by analogy with Flotta's return-to-isotrop.v

proposal. _ugo_..ts the model:

z'ij, 1 k

Launder (1975) models the 'rapid' part as:

where P_O.1 _ -- Ul,'tJo.r_ ' .

r,_a.,,= -C2oP, o,I (9)

This. by simple _,xtension to buoyant flow.,,, giw_:

,,here G,e - - 3g, O-.

r,,j.3 = -C:_oG,o ( 101

'l'hi_ t)ie(e-wise al)proach to modelling the integral expression (inspired by the once fashionable

practice of mod,'Iling the equivalent terms in the u,_ a equations, since abandoned: e.g. Speziale

et _tl. 1991 ) re...ults in tile absence from the model of any explicit depen(tence on terms containing

u,_0 and '_'--/) This is a serious omission a_ the role of the fluctuating pressure-scalar-gradient
ink "

correlations, is to co_:nter-balance the rate of production of u,O. including that due to the interaction

of the Reynolds stresses with the scalar gradients. Interestingly enough, in a DNS study of p_sive

scalar dynamics for fully-developed turbulent channel flow. Rogers et al. (1989) remark that "'the

results indicate that splitting the pressure term into rapid and slow parts is not a good idea"• Jones

and .",iusonge (1987) appear to have been among the first to attempt to restore ._uch dependence.

They argut'd that x,j.i and .vzj.2 _-hodht be modt.ll_d together sin_e both ultimately depend on the

mean field. Their proposal reads:

where

r,_j.1 + =,j.2 = -Clo + C2oa,_v_z s + d,_ Oxk

t u, uj _,_j)
"3

(1 i)

r = (1 + C'lo.V'.42)_--;A_ = c_,_aij
f

d,_ = Cao,_uu_O + C40_ku,O + C5o6_u,0

The model is of some complexity and involves six coefficients. A similar result was arrived at by

Dakos and Gibson (1987) from the use of Fourier transforms to derive non-linear expressions by



forllta] solution (in wave-nmnt,er space) of the .N'avier-St,_kes aIl,J _he ...¢aJar equati,m_-. In r _lltr;L,q

to the_e znor_ _ rigorous approachs. Craft and Launder (1969_ isn't' al.'.,_ Launder. 1995) prot....d

that :'r,u _ should be modelh,d as:

( u-_(1 , ) CI; Rka,Jox)O(-9

where Cle and Cj'0 are functions of A.. and the stres_ invariam. No explanation wm', offered, n.r i.',

one obviou.',, for the inclusion of the mean-scalar gradient in a purely turbulence-turbulence inter-

act ions term.

It wilt have become clear from the above that the basis fl_r tile modelling of the fluctuating pres._ure-

scalar-gradient term are somewhat precariou._. Application to wall-bounded flows introduces further

uneertaintie_ in the form of additional terms to account for the effects of a wall in damping tlw

fluctuating pre.-,sure field in ib. vicinity (Gib_on and Launder. 19781. The.._, terms involve "uall

damping' function.- that limit tho m_,del's apl_licability to simph, _rometri-s where sm'h fmwtio.s

can be specified with_.r ambiguiLv. All in all. therefore, it i: ruasomd)h, t(_ romludc that while'

gr .tient-traz_>i)ort rlJ(.t_,]> ar- iuad*'rtm_t,', scatar-fltlx trans, _t ]|l(ll']t'[_, ;tI'r' defi'ctix'*' ill their forlllll-

lati(,n and rio not neces,'.arily justify the iz|crea.'_ed computing (,x,,rI|vad required. The motivation

is thu.., ch,ar f_,r the abahd_mmr'nt of both cl(.mre strat,'_ir_- i_l f._,,ur of mor_' rati,,m|llv-drriv,,rt

relations of an algebraic nature.

"x
\

2 Model Formulation

The propo,_al we wi_h to advance through this paper is tt,at an expti(it algebraic relation for .,0

may be constructed, not from the reduction of the transport equation for this quantity (a... this will

theu involw' the ill-modelk'd pressure-fluctuating temp_'rature gradients term 1. but rather from the

utilization of representation theorems ba..;ed on a ratitmallv a..;sumed fun('tionM relationship which

is then reduced through the at)plicatir,n of aplmJpriate ('o_,traints. For an izwonq)ressible flow with

a pa._:ive ,,,('alar. the following functional relationshit) may be a.,_,,umed:

- u,O = f, (.-1-_, ";,;, If;;. 0 4 . p. _. 0:, 6)) (!3)

In the presence of bod.v forces, the relatiorship would become:

-u,0 = f(_-_, S,j. |l" U , (::_y. p. ¢, 0-'. O. ,q,) (14)

In compressible and reacting flows, the following relationship may be appropriate:

-- OP Op 3It) 15)
-u,O = .[(_. S u, It"u. 0,. p, _e. O. 0"-.g,, &b " &V "

Mt is the turbulent Mach number.

In the above. S_ and V,'_s are, r_pectively, the mean rate of strain and mean vorticity tensors:

1 0It 0It )



10l, i)('j

i'_',2 = _ ( O.r: OJ',

\Ve can introduce eo which is the raw of dissipation of the .,,calar variam'r O_.

relatvd to the dissipation rate of turbukmce kinetic euergy via the relation:

_co = R-] 0502

0.5u-7_

and R is the tirue-_('ale ratio which is taken a._ a known constant.

I17_

Thi.'- quantity is

tlO_

Wo confine our attention to the incompr(ssible ca._ fi)r which the general representation to the

fulwtiomd rvl,ition..,hip of Eq. 13 is:

wh(,re

- uK0

m

a, = a,(l,'.e. O2.p. L,I.i = 1 .... 20

and I,, consists of all p,,.-,sible invariants of the tensor variabh's listed in Eq. (13t.

_1!))

We may simplify the above by a.,_sumiug:

1. the ani_otr_,pies and turbulent time scales are sufficiently small to allow fi)r a mult_li,eor

expansi(m (the term,_ containing o_. 05.07 and o_, are neglected):

2. there is equal 1)alance between the effects of rotational and irrotationa] strain rates so thai

they enter through a production-type mechanism only. Thus we have:

alia

Tlw following compact form is then obtained:

_6 = 03

010 = --el 9

--lt,'--'O --_ 010., "t- Or2T,)O,. 1 + O3[ff,]Oj Jr" O9(?:kU).k "4- T]kC,,k)O.,1

The len_hscale of turbulence is taken to be of the form:

3

k_

(20)

(21)



Two diflh'rcnt thne.',cale:. _m' available in flow.., with scalar :ran.-.p,,rt: the .',calar time,_ca]e (r,)

and the dx'lJami,' turtmh.m'e tmw_.cah, (r,/). The rati,, ,,f tlw fl,rm,.r to th,, latter is. of c<mrsv.

the quantity 1R obtained in Eq. (la). It i.., legi:imate t,> u.-.v _'ither of the two timescales f,,r the

p_n'po_e of scaling t he g,envral n'pr,,sent at i, m bin. to be' consi.-t m_l v,'it h t he ch,>Wt, of t he t urbuh,nce

lengthscah,, we adopt the dynamic time,tale which i._ given by:

k
ra = - t'2'2)

\Vith the +tb+_w.. the algebraic expression for u,O in non-buoyant fl<_ws takes the tmal form lu the

loa'est order:

k 20_
-ud) = CL----

+ C, N,jO.r J

g":+0'_ ", Oe)

+ Ca/, Ora Oa.s

+ c,y, + -&-,

where the C's are dimeztsionle.-s con.-tants to

data.

t23)

be determi,md by reference to DNS and experime:llal

The first line in tJ:e simplified relation corresponds exactly to tlw simple gradient-transport model

given in Eq. (1) when Ct is set extual to _ The second line is immediately recognizable a.,_the Dalv
• O"0 • . •

and Harlow model in Eq. (4). Lines 3 and 4 bring m dependencies that are not present in any of the

al-_ebraic models rep_,rted to date. Their presence here is supported t_x' t hv outstanding analysis of

Dakos.and Gibson {1967) who obl'ailwd all expression for the fluctuating pressure-scalar-gradient

term that (',retained similar products of mean velocity and scalar gradients.

It is interesting to consider at the very start some of the limiting forms of the new proposal. When

a scalar gradient _ is imposed on an isotropic turbulem'e field only the scalar-flux compom nt t,0

is hen-zero and the present relation predicts this quantity as:

-- k 2 2C, O(--)
-co = --_C_ + 5 ")=-- (:?4)( 09

In non-isotropic turbulence, the imposition of a scalar gradient in a giw, n direction is known to

generate scalar flu_xes in the directions at right angle to it. Thus. in a two-dimensional flow in

the x-direction with mean-velocity. U. the impositio,_ of -0_a_would gonerate a scalar flux in the

streamwise direction (uO). T'o correct prediction of this flux component is very important in a

number of situations, especially in buoyant-flow conditions (e.g. in buoyant plumes where the

streamwise flu_x is the dominant production agency for the turbulence kineti,' energ3" and in the

classic cavity flow with one heated apd one cooled vertical surfaces). Extuation (l) predicts this



1

quantity _u, zero but the pr_,>eiLt propo.,al give.-:

1," OO
-u0 = C2--a-_--. (23)

O._

In a flow with finite _. the imposition of a velocity gradient in the same direction may increase or

decrease the struamwise .,,calar flux depending on whether the sign of thv velocity gradient i.', tlw

stone or opposite that of the scalar gradient. For this cast,, the present proposal gives:

= °°
" _ Oy

+ C3
Or" O0

Oy Oy

k 2- OU OO _.)_;

\\r ctm.>idvr below the rel.'iol_ brtween the model proposed hvr¢'ill and a wlml_.r t,f existing.

alt,.u-nativcs. Voshizuwa 1965] u.-,ed the twt,-sca[e direct intcracti_,l_ approximaTio:! to o_,_ain a

diff,l.-i_;_', r_.ns,>r 'D_ ', whi,'h b, Iin,'ar in the veh,<itv gradients. Hi... re._uh, which is vali, t for arbi3:rary

[h')'noht> numbs'r>, is given by:

Du = C'T_'s - C"'_" \_-j'x? + _/ ('2.7)

In a sh,,ar flow with finite _ this formulation does not permit for the diffu.qvitv componrnts
c,Lr 2 •

DI: and D2: t,_ b_• u:wqual. This latter defect w_ absent from the fi,rmuiation of lRubinstehl and

Barton (1991 i. obtained by at)plicati, m of rem)rmalization group theory At high ReynCdd._ number.

their mod_.l gives:

k 2 k 3 0[ "j /,':t 0/_",

D u = C1--_'u( - C2_7 0x, C3 _2 02. 3 (25)

Yoshizawa !195.',:: made a further proposal, given by:

( 29_

None of these mr,dels contain an explicit dependence on u,o_. sonwthing which is clearly present

in the exact equation for u/). This dependencp was restored in the model of Rogers et a]. (19_9)

who replaced the terms representing the time-change of the scalar fuxes, their dissipation and the

fluctuating pressure-scalar-gradient correlations by a inultiple of the scalar-fl_ux vector. Their inodel

is given by:

OO (30)
u, O = - O_ _u. u_Oxj

where O -_ is the reciprocal of the determinant of the tensor O u which is defined as:

Ou = CDc_ u +- (31)
T _I]



where r i.'-, lilt' lime.,,taic.

The author_, point our that the matrix O,j becomes stiff tot value_ of Sr/CD >> 1 but tile model

suffer.- a more seriou.- t)ro[)]Clll; ,lamely. for flows subjected to llornlal Iheall strains such ik'; t)lalle

strain or the axisymmetric expansi,m/'contraction - Eq. (30) i_ not necessarily im'ertible rendering

Eq. (29) singular (see Appemtix).

The relationship between th,, present model amd the alternatives can best be seen from Tables 1-4

where various components of the diffusivity ten_r (D, a ) obtained with tho_. models are presemed.

The results are for the ¢a_,e where _" is the only non-zero velocity gradient.

/

3 Appendix

IA;, consider the pcrfi_rmancv of the Rogers et al. (1969) modt.l with re:,pect ;o the ca.,,e of mean

flow plane strain i.e. where:

['1.1 "_- --U'2.2 = S

and all other co,npouent.- of t', 4 are zero. For this case:

and. obviously.

cZa+S 0 0 ]

ir

o= o c_2z_s 0 (al)
0 0 _Cza

3"

So. for arbitrary turbulen,'e

, 0,-,)= (CD + Sr ) "LUl-:d77z_+ u_"eOa'--Z,+ _.-r--oar:_ (.4a)

-- , ( 0@ 0(-) 0@)u.20 = (CD - S------_r) u'>--g_r_Tzl" + u"u"_z2"" " . + u2ua-a---oza (A4)

_-7( oo oo oouaua .-w- "_ (.45)
uao=( ) ua"_a77_t+ua"_aT;_ + o.ra:

w

Clearly. if C D = St, the scalar.flux u2O becomes infinite. In the vicinity of CD _ St, the resuh will

be unphyslcal. For any general irrotational mean flow strain, this model would suffer from similar

defects.

i
'/,



Table 1. Models results for diffusivity-ten.-or ('onlp¢,nent Dll

Model

P re ._e n t

Yo,_hzzawa 1965)

}'osh_zau'a (1988)

Rogers ctal. {I9,',9)

Rub_u,,t_ m and Barton (i991)

C_k_

("l a-:
t

4Ck 7.

-- l,," yi_g, Ot+ C-'_ u2 +2C47 -37

1 k_[2 1 k2--Ot"
W-D>7 -- ,_. _ u r ---( ;, ," og

Tabh' 2. Models results for diffusivity-tensor component D'2.2

lklodei

Pr, s, n t C I _i_
}o,,hczawe (19e'5) CI 7

-- '2

Rog_r._ _;t el. (i9_9)

Rubin,_teiu aTtd Bart,m t1991) Cik_
t

+C_ _ c--_

C77'"

Table 3.

Model

PT'_,s_nt C 2_ Y/'g

}'o.sh_zuu'u f'Ig&5)

}'o._hlzau'o (19_'8)

Rogers et al. (19_9) ¢--7

Rubm._t_:m arm Bartort (1991)

ModeL- results for diffusivity-tensor component Dr.,

k :_ cot"

+Ca a
C _.aat.

- _r_._.

(_)" ,o,-8 e(Cl + C_) ,_-;_

- 0rsg o,,
• _" 0!/

1 k 27.',.01

G .-.,m- i '_

Table 4. Models results for diffusivity-tensor component D21

Model

Present C2 _W_

Yosh*zawa (I985)

Yoshzzau,a (1988)

I _--_Rogers et al. (I989) _-g '
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